

ELIZADE UNIVERSITY ILARA MOKIN, ONDO STATE

FACULTY OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

FIRST SEMESTER EXAMINATION, 2017/2018 ACADEMIC SESSION

COURSE TITLE: ELECTRONIC CIRCUIT I

COURSE CODE: EEE 321

EXAMINATION DATE:

COURSE LECTURER: DR K. O. TEMIKOTAN

HOD's Signature

TIME ALLOWED: 2 HOURS 30 MINUTES

INSTRUCTION

- 1. ANSWER ALL QUESTIONS IN SECTION A AND FOUR QUESTIONS IN SECTION B
- 2. SEVERE PENALTIES APPLY FOR MISCONDUCT, CHEATING, POSSESSION OF UNAUTHORIZED MATERIALS DURING EXAM.
- 3. YOU ARE NOT ALLOWED TO BORROW ANY WRITING MATERIALS DURING THE EXAMINATION.

SECTION A

Answer ALL questions in this section

i. ii.	A semiconductor has temperature coefficient of resistance In an N-type of material the electron is called the while the hole is called
iii.	The quantity r'_e is normally obtained by dividing 25mA by A Class 'A' amplifier has an ac signal output of (half, Full) cycle while Class 'B' has
iv.	A Class 'A' amplifier has an ac signal output of (harr, 1 day)
v.	output of (half, full) cycle A common emitter circuit connected such that the collector resistance equals zero is
	called
vi.	The source current is equal to the drain current because the gate has
vii.	In a JFET drain characteristics, the pinch off region is also referred to as region
viii.	An is a circuit that generates a continuously repetitive output signal
ix.	An amplifier that is designed to amplify the difference between two input signals is
	amplifier.
х.	Class 'C' amplifiers are invariably employed in amplifiers. [12 marks]

SECTION B

Answer ANY FOUR questions in this section

Question 1

- (a) A junction field effect transistor has the transfer characteristics shown in Figure 1.
 - Find (i) the pinch off voltage and (ii) derive an appropriate equation for the drain current. [3marks]

Figure 1 Transfer Characteristics of a JFET

- (b) A JFET has an I_{DSS} of 9 mA and a v_{GS} (off) of -3V. Find the value of drain current when V_{GS} = -1.5V. [2 marks]
- (c) Define the JFET parameters and establish the relationship between them [4marks]
- (d) Compare BJTs and Field effect transistors. [3 marks]

Question 2

- (a) Draw the output characteristics of a bipolar junction transistor and show the following regions (i) cut off region. (ii) Saturation region and (iii) active region. In which of these regions can you obtain faithful amplification? [5 marks]
- (b) The common base (CB) amplification factor is α , and the common emitter amplification factor is β .

Express (i) β is terms of α (ii) α in terms of β . [2marks]

(c) Using a suitable and neat diagram, show how a load line is obtained. [5 marks]

Question 3

For the circuit in Figure 2, compute (i) $r_{in(base)}$ (ii) A_v (iii) V_{out} and r_{in}

[12 marks]

Figure 2: For Question 3

Question 4

- a) Express the input impedance, current gain, voltage gain, and output admittance of an amplifier in terms of the hybrid parameters. [4 marks]
- b) A junction transistor has the following parameters;

$$h_{ie} = 2 \ k \Omega; \ h_{re} = 1.6 \times 10^{-4}; \ h_{fe} = 50; \ h_{oe} = 50 \mu A/V$$

Given that the load resistance (R_L) is 12 k Ω , and the source resistance (R_S) is 500 Ω , determine:

- i. The current gain
- ii. The input resistance
- iii. The voltage gain
- iv. The output resistance

[8 marks]

Question 5

- (a) What are the advantages of negative feedback in amplifiers? [3 marks]
- (b) An amplifier with voltage gain of 60 dB uses $\frac{1}{20}$ of its output in negative feedback. What is the gain with feedback in dB? [2 marks]
- (c) What are the attributes of an ideal operational amplifier? [3 marks]
- (d) A summing integrator made from op amp has three inputs v_1 , v_2 , and v_3 with three resistors R_1 , R_2 , and R_3 connected in series with them respectively. $R_1 = 100K$, $R_2 = 200$, $R_3 = 1M$ and $C = 1\mu A$ Find the output voltage v_0 . [4 marks]

Question 6

- (a) Why are heat sinks used with power amplifiers? [2 marks]
- (b) A power transistor has thermal resistance $\theta = \frac{300^{\circ}C}{W}$. If the maximum temperature is 90°C and the ambient temperature is 30°C, find the maximum permissible power dissipation. If a heat sink is used with the transistor, the value of θ is reduced to 60°C/W. Find the maximum power dissipation. [4marks]
- (c) A Class 'B' push pull amplifier has an efficiency of 60% and each transistor has a rating of 2.5 W. Find the ac output power and the dc input power. [4 marks]
- (d) Why are push pull amplifiers used in the output stages of power amplifier? [2marks]